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COMMENT 

The shifted 1/N expansion and the energy eigenvalues of the 
Hulthen potential for I # 0 

Barnana Roy and Rajkumar Roychoudhury 
Electronics Unit, Indian Statistical Institute, Calcutta 700 035, India 

Received 20 October 1986 

Abstract. The shifted 1/ N expansion has been used to obtain the energy values of the 
Hulthen potential for non-zero values of the orbital angular momentum. The analytic 
expression for the energies En,, yield fairly accurate results for a wide range of values of 
n, I and the screening parameter A. The energy values obtained by this method have been 
compared and found to be in excellent agreement with Pad6 approximation calculations. 

Recently, a great deal of interest has been shown in the application of the shifted 1 / N  
expansion (Sukhatme and Imbo 1983, Imbo et a1 1984a) to a class of screened Coulomb 
potentials which have wide applications in various branches of physics (Imbo er a1 
1984b, Roy 1986). Amongst the various screened Coulomb potentials, the Hulthen 
potential which, in atomic units, is given by 

ZA e-" 
V ( r ) = - -  1 - e - A '  

( A  being the screening parameter and Z being the charge of the nucleus) has a special 
status because it yields closed analytic solutions for S waves (Fliigge 1974) and therefore 
is often used as an approximation for the screened Coulomb potentials. However, 
one does not have such nice solutions for higher partial waves. Amongst various 
methods for obtaining the energy values of the Hulthen potential for 1 f 0 (Dutt and 
Mukherji 1982, Patil 1984, Popov and Weinberg 1985) the Pad6 approximation method 
yields fairly accurate results (Lai and Lin 1980). However, it is an iterative procedure 
and the other works mentioned earlier involve elaborate calculations. 

In the present comment we shall study the non-zero angular momentum states of 
the Hulthen potential by using the shifted 1/ N expansion. 

The shifted 1/ N expansion differs from the ordinary large-N expansion (Mlodinow 
and Papanicolaou 1980, 1981) in the expression for the expansion parameter. In the 
former, the expansion parameter is l/k; where I?= N + 21 -a ,  whereas in the latter it 
is 1/ k where k = N + 21, N being the number of spatial dimensions, I (  1 + N - 2) h2  is 
the eigenvalue of the square of the N-dimensional orbital angular momentum and a 
is the shift chosen by requiring agreement between the 1/E expansions and the exact 
analytic results for the harmonic oscillator and Coulomb potentials (Sukhatme and 
Imbo 1983). Since the shifted 1 / N  expansion is not an expansion in powers of the 
potential, it can be used for problems which d o  not necessarily involve small coupling 
constants for perturbation theory. 
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The radial Schrodinger equation in N spatial dimensions in terms of the shifted 
variable k =  N + 21 - a  is (Mlodinow and Shatz 1984) 

where V( r )  is given by equation (1).  
In order to get useful results from a I lkexpans ion ,  the large-E limit of the potential 

must be suitably defined ( Imbo et a1 1984a). Since the angular momentum barrier 
term behaves like /? at large k, so should the potential V(r).  This will give rise to an 
effective potential which does not vary with f at large values of k; resulting in a sensible 
zeroth-order classical result. Hence we consider the following equation (Imbo et a1 
1984a): 

where Q is a constant to be specified later. 
The shifted 1/ N expansion method consists in solving equation (3) systematically 

in terms of the expansion parameter l / f .  The leading contribution to the energy comes 
from the effective potential 

Now if we assume that V( r )  is sufficiently well behaved so that VeR( r )  has a minimum 
at r = r ,  and there are well defined bound states, then the following relationship is valid: 

4mriV’(ro) = h’Q (5) 

where ro is the root of the equation 

N + 2 1 - - 2 + ( 2 n + l )  ( 3+----- r o w ; ) )  ‘’2 = ( 4 m r p ” )  ’ ’? 

For the derivation of equation (6) we refer the reader to the paper by Imbo et a1 (1984a). 
Once ro is determined, the leading term in E is given by 

The next contribution is of order f and is ( Imbo et a1 1984a) 

The shift a is chosen so that this contribution vanishes. Therefore we obtain 

a = 2-2(2n + l ) m w /  f i .  

x = ( f ’  ’/ ro)( r - ro) 

(9)  
The successive contributions to the energy are determined by the substitution 

(10) 
in equation (3) and expanding about x = 0 in powers of x. Since the algorithm for the 
shifted 1/ N expansion has been developed previously ( Imbo et a1 1984a), we present 
only the essential steps here. 
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The energy eigenvalues are given by an expansion in powers of l l f ,  where f =  N = 
21-a, as 

where 

’“’= 8m 
h’(1- a ) (3  - a )  + ( 1 + 2 n ) k, + 3 ( 1 -t 2 n + 2 n 2, t4 

1 
f i W  

- -[ tf + 6( 1 + 2n)EI k3 + ( 1 1 + 30n + 30n2)E‘f] 

p (’’ = ( 1 + 2 n ) s’’ + 3( 1 + 2 n + 2n 2 ,  s’, + 5 (  3 + 8 n + 6n * + 4n ’) 6, 
[(  1 + 2n ) E ;  + 12( 1 + 2 n  + 2n’) t2k4 + 2(2 1 + 59n + 5 1 n’ 

1 
fin 

-- 

+ 34n’) i i+ 2E,s’, +6(  1 + 2 n  ) E 1 &  + 30( 1 + 2 n  + 2 n 2 ) E , &  
+ 6 ( 1 + 2 n ) gj s’, + 2 ( 1 1 + 3 0 n + 3 0 n * ) kj & + 1 O( 1 3 + 40 n + 42 n ’ 
+ 28 n 3 ,  g3 g5] + 7 [ 4Efk2 + 36( 1 + 2 n ) g1 k2 Ej 

+8(  11 +30n +30n’)E2k:+24(1 +2n)kfk4+8(31 +78n 

+78n’)d,E3t4+ 12(57+ 189n +225n2+ 150n’)kfE4] 

-- [ 8 E : F ;  + 108( 1 + 2 n )  

1 

( f i w )  

1 + 48( 1 1 + 30n + 30n2) 
( f i W ) 3  

x t l E ~ + 3 0 ( 3 1 + 1 0 9 n + 1 4 1 n 2 + 9 4 ~ 3 ) ~ ~ l  (13) 
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For any given choice of n and 1, equation (6) becomes a transcendental equation 
which can be solved numerically to obtain ro .  Substitution of ro into equations ( 5 )  
and (11)-(25) immediately gives the energy eigenvalues. In all our calculations, we 
have used atomic units so that h = m = 1. We list our energy values for the various 
states in tables 1 and  2 and  compare them with PadC approximation calculations (Lai 
and  Lin 1980). It is clear from table 1 that, for A 30.35 ,  the successive contributions 
from the perturbation series are substantial and one needs to consider higher-order 
terms in the l /&  expansion to obtain better accuracy. However, it should be noted 
that our first-order correction in l/&, i.e. E',::, has been compared with the twelfth-order 
correction in A, i.e. E',:?) (Lai and Lin 1980), and  as is evident from the tables the 
agreement is fairly good. 

Therefore the shifted 1/N expansion has proved to be an  efficient method for 
studying the Hulthen potential for 1 f 0. 

One of us (BR)  thanks the Council of Scientific and Industrial Research, New Delhi, 
for financial assistance. 

Table 1. Energy eigenvalues E,,,, in atomic units as a function of the screening parameter 
A for 2p-3d states. The results of the PadC approximation calculations (given in paren- 
theses) and our calculations, which include one correction in I l k ;  are shown. 

Screening 
parameter 2P 3P 3d 

0.025 

0.050 -0.101 045 
(-0.101 043) 

0.100 -0.079 180 
(-0.079 179) 

0.150 

-0.043 707 
(-0.043 707) 
-0.033 159 

(-0.033 165) 
-0.015 982 

(-0.016 054) 
-0.004 276 

(-0.004 466) 

-0.043 603 
(-0.043 603) 
-0.032 753 

(-0.032 753 
-0.014 489 

(-0.014484) 
-0.001 469 

(-0.001 391) 
0.200 -0.041 908 

(-0.041 886) 
0.300 -0.014 009 

(-0.013 790) 
0.350 -0.004 437 

(-0.003 779) 

Table 2. Energy eigenvalues E,,, ,  in atomic units as a function of the screening parameter 
A for 4p-4f states. The results of Pad6 approximation calculations (given in parentheses) 
and our calculation for E, , , , ,  which includes one correction in l /k;  are shown. 

Screening 
parameter 4P 4d 4f 

0.025 -0.019 945 -0.091 845 0.019 691 
(-0.019949) (-0.019846) (-0.019691) 

0.050 -0.011 002 -0.010656 -0.010 062 
(-0.011 058) (-0.010667) (-0.010062) 

0.075 -0.004 398 -0.003 793 -0.002 564 
(-0.004 622) (-0.003 834) (-0.002 556) 
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